Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.

نویسندگان

  • Sergei A Grigoryev
  • Gaurav Arya
  • Sarah Correll
  • Christopher L Woodcock
  • Tamar Schlick
چکیده

The architecture of the chromatin fiber, which determines DNA accessibility for transcription and other template-directed biological processes, remains unknown. Here we investigate the internal organization of the 30-nm chromatin fiber, combining Monte Carlo simulations of nucleosome chain folding with EM-assisted nucleosome interaction capture (EMANIC). We show that at physiological concentrations of monovalent ions, linker histones lead to a tight 2-start zigzag dominated by interactions between alternate nucleosomes (i +/- 2) and sealed by histone N-tails. Divalent ions further compact the fiber by promoting bending in some linker DNAs and hence raising sequential nucleosome interactions (i +/- 1). Remarkably, both straight and bent linker DNA conformations are retained in the fully compact chromatin fiber as inferred from both EMANIC and modeling. This conformational variability is energetically favorable as it helps accommodate DNA crossings within the fiber axis. Our results thus show that the 2-start zigzag topology and the type of linker DNA bending that defines solenoid models may be simultaneously present in a structurally heteromorphic chromatin fiber with uniform 30 nm diameter. Our data also suggest that dynamic linker DNA bending by linker histones and divalent cations in vivo may mediate the transition between tight nucleosome packing within discrete 30-nm fibers and self-associated higher-order chromosomal forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleosome positioning and composition modulate in silico chromatin flexibility.

The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin f...

متن کامل

Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.

The folding of the nucleosome chain into a chromatin fiber is a central factor for controlling the DNA access of protein factors involved in transcription, DNA replication and repair. Force spectroscopy experiments with chromatin fibers are ideally suited to dissect the interactions that drive this process, and to probe the underlying fiber conformation. However, the interpretation of the exper...

متن کامل

Regulation of chromatin folding by conformational variations of nucleosome linker DNA

Linker DNA conformational variability has been proposed to direct nucleosome array folding into more or less compact chromatin fibers but direct experimental evidence for such models are lacking. Here, we tested this hypothesis by designing nucleosome arrays with A-tracts at specific locations in the nucleosome linkers to induce inward (AT-IN) and outward (AT-OUT) bending of the linker DNA. Usi...

متن کامل

Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics...

متن کامل

Nucleosome spacing and chromatin higher-order folding

Packing of about two meters of the human genome DNA into chromatin occupying a several micron-sized cell nucleus requires a high degree of compaction in a manner that allows the information encoded on DNA to remain easily accessible. This packing is mediated by repeated coiling of DNA double helix around histones to form nucleosome arrays that are further folded into higher-order structures. Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 32  شماره 

صفحات  -

تاریخ انتشار 2009